Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.372
Filtrar
1.
Biol Lett ; 20(2): 20230480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412964

RESUMO

Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Órgão Elétrico/fisiologia , Filogenia , Canais de Sódio/genética , América do Sul
2.
Epilepsia Open ; 9(2): 643-652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235958

RESUMO

OBJECTIVE: To investigate the effectiveness and tolerability of ketogenic diet therapy (KDT) in patients with developmental and epileptic encephalopathy (DEE) associated with genetic etiology which onset within the first 6 months of life, and to explore the association between response to KDT and genotype/clinical parameters. METHODS: We retrospectively reviewed data from patients with genetic DEE who started KDT at Beijing Children's Hospital between January 1, 2016, and December 31, 2021. RESULTS: A total of 32 patients were included, involving 14 pathogenic or likely pathogenic single genes, and 16 (50.0%) patients had sodium/potassium channel gene variants. The median age at onset of epilepsy was 1.0 (IQR: 0.1, 3.0) months. The median age at initiation of KDT was 10.0 (IQR: 5.3, 13.8) months and the median duration of maintenance was 14.0 (IQR: 7.0, 26.5) months, with a mean blood ß-hydroxybutyrate of 2.49 ± 0.62 mmol/L. During the maintenance period of KDT, 26 (81.3%) patients had a ≥50% reduction of seizure frequency, of which 12 (37.5%) patients achieved seizure freedom. Better responses were observed in patients with STXBP1 variants, with four out of five patients achieving seizure freedom. There were no statistically differences in the age of onset, duration of epilepsy before KDT, blood ketone values, or the presence of ion channel gene variants between the seizure-free patients and the others. The most common adverse effects were gastrointestinal side effects, which occurred in 21 patients (65.6%), but all were mild and easily corrected. Only one patient discontinued KDT due to nephrolithiasis. SIGNIFICANCE: KDT is effective in treating early onset genetic DEE, and no statistically significant relationship has been found between genotype and effectiveness in this study. KDT is well tolerated in most young patients, with mild and reversible gastrointestinal side effects being the most common, but usually not the reason to discontinue KDT. PLAIN LANGUAGE SUMMARY: This study evaluated the response and side effects of ketogenic diet therapy (KDT) in patients who had seizures within the first 6 months of life, and were diagnosed with genetic developmental and epileptic encephalopathy (DEE), a type of severe epilepsy with developmental delay caused by gene variants. Thirty-two patients involving 14 gene variants who started KDT at Beijing Children's Hospital between were included. KDT was effective in treating early onset genetic DEE in this cohort, and patients with STXBP1 variants responded better; however, no statistically significant relationship was found between gene variant and response. Most young patients tolerated KDT well, with mild and reversible gastrointestinal side effects being the most common.


Assuntos
Dieta Cetogênica , Epilepsia , Criança , Humanos , Estudos Retrospectivos , Dieta Cetogênica/efeitos adversos , Epilepsia/genética , Convulsões , Genótipo , Corpos Cetônicos , Canais de Sódio/genética
3.
Ann Neurol ; 95(4): 754-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38113311

RESUMO

OBJECTIVE: De novo mutations of the voltage-gated sodium channel gene SCN8A cause developmental and epileptic encephalopathy (DEE). Most pathogenic variants result in gain-of-function changes in activity of the sodium channel Nav1.6, poorly controlled seizures, and significant comorbidities. In previous work, an antisense oligonucleotide (ASO) reduced Scn8a transcripts and increased lifespan after neonatal administration to a mouse model. Here, we tested long-term ASO treatment initiated after seizure onset, as required for clinical application. METHODS: ASO treatment was initiated after observation of a convulsive seizure and repeated at 4 to 6 week intervals for 1 year. We also tested the long-term efficacy of an AAV10-short hairpin RNA (shRNA) virus administered on P1. RESULTS: Repeated treatment with the Scn8a ASO initiated after seizure onset provided long-term survival and reduced seizure frequency during a 12 month observation period. A single treatment with viral shRNA was also protective during 12 months of observation. INTERPRETATION: Downregulation of Scn8a expression that is initiated after the onset of seizures is effective for long-term treatment in a model of SCN8A-DEE. Repeated ASO administration or a single dose of viral shRNA prevented seizures and extended survival through 12 months of observation. ANN NEUROL 2024;95:754-759.


Assuntos
Epilepsia , Animais , Camundongos , Modelos Animais de Doenças , Regulação para Baixo/genética , Epilepsia/terapia , Epilepsia/tratamento farmacológico , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Convulsões/genética , Canais de Sódio/genética
4.
Mar Drugs ; 21(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999412

RESUMO

Tetrodotoxin (TTX) is an exceedingly toxic non-protein biotoxin that demonstrates remarkable selectivity and affinity for sodium channels on the excitation membrane of nerves. This property allows TTX to effectively obstruct nerve conduction, resulting in nerve paralysis and fatality. Although the mechanistic aspects of its toxicity are well understood, there is a dearth of literature addressing alterations in the neural microenvironment subsequent to TTX poisoning. In this research endeavor, we harnessed human pluripotent induced stem cells to generate cerebral organoids-an innovative model closely mirroring the structural and functional intricacies of the human brain. This model was employed to scrutinize the comprehensive transcriptomic shifts induced by TTX exposure, thereby delving into the neurotoxic properties of TTX and its potential underlying mechanisms. Our findings revealed 455 differentially expressed mRNAs (DEmRNAs), 212 differentially expressed lncRNAs (DElncRNAs), and 18 differentially expressed miRNAs (DEmiRNAs) in the TTX-exposed group when juxtaposed with the control cohort. Through meticulous Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis, we ascertained that these differential genes predominantly participate in the regulation of voltage-gated channels and synaptic homeostasis. A comprehensive ceRNA network analysis unveiled that DEmRNAs exert control over the expression of ion channels and neurocytokines, suggesting their potential role in mediating apoptosis.


Assuntos
MicroRNAs , Síndromes Neurotóxicas , Humanos , Tetrodotoxina/farmacologia , Transcriptoma , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Canais de Sódio/genética , Canais de Sódio/metabolismo , Síndromes Neurotóxicas/genética , Redes Reguladoras de Genes
5.
JACC Clin Electrophysiol ; 9(12): 2459-2474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831035

RESUMO

BACKGROUND: In Brugada syndrome (BrS), phase 2 re-excitation/re-entry (P2R) induced by the transient outward potassium current (Ito) is a proposed arrhythmia mechanism; yet, the most common genetic defects are loss-of-function sodium channel mutations. OBJECTIVES: The authors used computer simulations to investigate how sodium channel dysfunction affects P2R-mediated arrhythmogenesis in the presence and absence of Ito. METHODS: Computer simulations were carried out in 1-dimensional cables and 2-dimensional tissue using guinea pig and human ventricular action potential models. RESULTS: In the presence of Ito sufficient to generate robust P2R, reducing sodium current (INa) peak amplitude alone only slightly potentiated P2R. When INa inactivation kinetics were also altered to simulate reported effects of BrS mutations and sodium channel blockers, however, P2R occurred even in the absence of Ito. These effects could be potentiated by delaying L-type calcium channel activation or increasing ATP-sensitive potassium current, consistent with experimental and clinical findings. INa-mediated P2R also accounted for sex-related, day and night-related, and fever-related differences in arrhythmia risk in BrS patients. CONCLUSIONS: Altered INa kinetics synergize powerfully with reduced INa amplitude to promote P2R-induced arrhythmias in BrS in the absence of Ito, establishing a robust mechanistic link between altered INa kinetics and the P2R-mediated arrhythmia mechanism.


Assuntos
Síndrome de Brugada , Humanos , Animais , Cobaias , Síndrome de Brugada/genética , Arritmias Cardíacas/genética , Potenciais de Ação , Canais de Sódio/genética , Canais de Sódio/farmacologia , Potássio/farmacologia
6.
Cell Mol Life Sci ; 80(10): 287, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689602

RESUMO

Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.


Assuntos
Conotoxinas , Caramujo Conus , Toxinas Biológicas , Humanos , Animais , Conotoxinas/farmacologia , Proteínas de Membrana , Canais de Sódio/genética
7.
Pestic Biochem Physiol ; 194: 105490, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532317

RESUMO

Aedes aegypti is responsible for transmitting a variety of arboviral infectious diseases such as dengue and chikungunya. Insecticides, particularly pyrethroids, are used widely for mosquito control. However, intensive used of pyrethroids has led to the selection of kdr mutations on sodium channels. L982W, locating in the PyR1 (Pyrethroid receptor site 1), was first reported in Ae. aegypti populations collected from Vietnam. Recently, the high frequency of L982W was detected in pyrethroid-resistant populations of Vietnam and Cambodia, and also concomitant mutations L982W + F1534C was detected in both countries. However, the role of L982W in pyrethroid resistance remains unclear. In this study, we examined the effects of L982W on gating properties and pyrethroid sensitivity in Xenopus oocytes. We found that mutations L982W and L982W + F1534C shifted the voltage dependence of activation in the depolarizing direction, however, neither mutations altered the voltage dependence of inactivation. L982W significantly reduced channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, and Type II pyrethroids, deltamethrin and cypermethrin. No enhancement was observed when synergized with F1534C. In addition, L982W and L982W + F1534C mutations reduced the channel sensitivity to DDT. Our results illustrate the molecular basis of resistance mediates by L982W mutation, which will be helpful to understand the interacions of pyrethroids or DDT with sodium channels and develop molecular markers for monitoring pest resistance to pyrethroids and DDT.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , DDT/farmacologia , Leucina , Piretrinas/farmacologia , Inseticidas/farmacologia , Canais de Sódio/genética , Mutação , Resistência a Inseticidas/genética , Aedes/genética , Mosquitos Vetores/genética
8.
Neurol Sci ; 44(12): 4491-4498, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37452996

RESUMO

Infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1) is caused by biallelic mutations in the NALCN gene, the major ion channel responsible for the background Na + conduction in neurons. Through whole-exome sequencing (WES), we report three novel homozygous variants in three families, including c.1434 + 1G > A, c.3269G > A, and c.2648G > T, which are confirmed and segregated by Sanger sequencing. Consequently, intron 12's highly conserved splice donor location is disrupted by the pathogenic c.1434 + 1G > A variation, most likely causing the protein to degrade through nonsense-mediated decay (NMD). Subsequently, a premature stop codon is thus generated at amino acid 1090 of the protein as a result of the pathogenic c.3269G > A; p.W1090* variation, resulting in NMD or truncated protein production. Lastly, the missense mutation c.2648G > T; p.G883V can play a critical role in the interplay of functional domains. This study introduces recurrent urinary tract infections for the first time, broadening the phenotypic range of IHPRF1 syndrome in addition to the genotypic spectrum. This trait may result from insufficient bladder emptying, which may be related to the NALCN channelosome's function in background Na + conduction. This work advances knowledge about the molecular genetic underpinnings of IHPRF1 and introduces a novel phenotype through the widespread use of whole exome sequencing.


Assuntos
Canais de Sódio , Infecções Urinárias , Humanos , Canais de Sódio/genética , Canais de Sódio/metabolismo , Canais Iônicos/genética , Proteínas de Membrana/genética , Fenótipo , Mutação de Sentido Incorreto , Síndrome , Infecções Urinárias/genética , Mutação/genética
9.
J Eur Acad Dermatol Venereol ; 37(11): 2355-2361, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37356045

RESUMO

BACKGROUND: Increasing evidence has sparked a debate on the loss of sensitivity of scabies mites to conventional permethrin therapy. Mutations in the voltage-sensitive sodium channels (VSSC) were associated with knockdown resistance (kdr) in many arthropods, but have never been identified in Sarcoptes scabiei variatio (var.) hominis mites. OBJECTIVES: To identify factors contributing to therapy failure. METHODS: Sixty-seven mites were collected from 64 scabies-infested patients in Vienna, Austria, of whom 85.9% were refractory to prior permethrin-based treatments, and genotyped for the presence of nucleotide polymorphisms in Domain II of the VSSC, known to be associated with kdr. Information regarding previous antiscabietic therapies, decontamination procedures and possible re-infestations by contacts as well as the response to re-imposed therapies were obtained. RESULTS: Sequence alignment comparisons revealed previously unidentified mutations in the coding region of Domain II of the VSSC. A novel A1663T transversion was detected in 97.0% of the mites, resulting in a non-synonymous substitution from methionine to leucine, M918L, a mutation known to confer kdr in other arthropods. In addition, a synonymous G1659A transition was identified in one mite, which otherwise showed a nucleotide sequence identical to the wild-type reference. No major inconsistencies were observed within the previous therapeutic and decontamination procedures, which could have accounted for the observed non-responsiveness to permethrin-based therapies. Subsequent cure of infestation was achieved in 65.6% of the participants, predominantly by combination therapies with topical permethrin and systemic ivermectin. However, in 14.6% of the cured cases, permethrin monotherapy sufficed for eradication of scabies, albeit in some cases prolonged exposure was necessary. CONCLUSIONS: The kdr-associated M918L mutation in the VSSC gene has now emerged in S. scabiei var. hominis mites. Hence, loss of sensitivity to permethrin due to kdr-type resistance may be more prevalent than anticipated and may be decisive for the therapy responsiveness of scabies-infested patients.


Assuntos
Artrópodes , Inseticidas , Escabiose , Animais , Humanos , Permetrina/farmacologia , Permetrina/uso terapêutico , Sarcoptes scabiei/genética , Escabiose/tratamento farmacológico , Inseticidas/farmacologia , Inseticidas/uso terapêutico , Mutação , Canais de Sódio/genética , Canais de Sódio/uso terapêutico
10.
Arch Insect Biochem Physiol ; 113(4): e22021, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158115

RESUMO

Thrips palmi Karny (Thysanoptera: Thripidae) can harm a variety of agricultural crops and transmit plant viruses, causing heavy economic losses. In the Hainan province of China, pyrethroids were sprayed widely to control T. palmi, which leaded to resistance to pyrethroids in T. palmi. The bioassay has shown that the resistance ratio of T. palmi to pyrethroids increases annually. Resistance ratio to λ-cyhalothrin has increased from 10.711 to 23.321 and to cypermethrin has increased from 5.507 to 23.051 for 3 years, 2020-2022. The double mutation (I265T/L1014F) was identified from the field strain for the first time, which were located in the domains I and II of the voltage-gated sodium channel of T. palmi, respectively. The double mutation is probably the reason for the higher resistance of T. palmi in Hainan. The frequencies of the double mutation were 53.33% in HN2020, 70.00% in HN2021, and 96.67% in HN2022. Results indicated that T. palmi had developed different degrees of resistance to pyrethroids in Hainan. This study provides theoretical guidance for the use of insecticides in the field control of thrips.


Assuntos
Inseticidas , Piretrinas , Tisanópteros , Animais , Tisanópteros/genética , Piretrinas/farmacologia , Inseticidas/farmacologia , Mutação , Canais de Sódio/genética , Resistência a Inseticidas/genética
11.
PLoS One ; 18(5): e0285883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195995

RESUMO

Pyrethroid resistance in Aedes aegypti is widespread in southern Vietnam because the photostable 2nd generation pyrethroids have been used in large amounts over extensive areas for malaria and dengue vector control. In our previous report in 2009, F1534C, one of the point mutations in the voltage-sensitive sodium channel (VSSC) in Ae. aegypti, was widespread at high frequency in south and central area. However, no significant correlation between the frequency of F1534C and pyrethroid susceptibility was detected primarily because the F1534C mutation frequency in the southern highland area was very low, despite that the bioassay indicated high pyrethroid resistance. The point mutation in the VSSC, L982W, which was not the target mutation in our previous study, was recently determined to be an important mutation causing high-pyrethroid resistance in Vietnamese Ae. aegypti. In the present study, a re-investigation of L982W in the mosquito samples collected in 2006-2008 revealed a greater distribution of this mutation (allelic percentage 59.2%) than F1534C (21.7%) and the greater proportion of homozygous L982W as compared to F1534C provided a plausible answer to the question concerning the unknown resistance factor in the southern highland area. L982W frequencies were uniformly higher in the southern part of Vietnam, including the highland area with a significantly high positive correlation with pyrethroid resistance in Ae. aegypti.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Piretrinas/farmacologia , Mutação Puntual , Aedes/genética , Inseticidas/farmacologia , Vietnã , Resistência a Inseticidas/genética , Mutação , Mosquitos Vetores/genética , Canais de Sódio/genética
12.
Am J Med Genet A ; 191(7): 1942-1947, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37046053

RESUMO

The sodium leak channel (NALCN) gene encodes a sodium leak channel that plays an important role in the regulation of the resting membrane potential and the control of neuronal excitability. Mutations in the NALCN gene have been reported in patients with infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of the limbs and face with hypotonia and developmental delay (CLIFAHDD syndrome). We describe the case of a father with drug-resistant left temporo-orbitofrontal epilepsy and his son with mildly-symptomatic temporal epilepsy (only recurrent déjà vu auras) whose genetic panels identified a likely pathogenic deletion of exon 27 on the NALCN gene. Our study helps broaden the clinical spectrum of diseases associated with mutations in the NALCN gene.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Canais Iônicos , Hipotonia Muscular/genética , Epilepsia do Lobo Temporal/genética , Canais de Sódio/genética , Epilepsia/genética , Sódio , Proteínas de Membrana/genética
13.
Hum Mol Genet ; 32(13): 2192-2204, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37010102

RESUMO

Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)] and compared them with neurons from an epileptic encephalopathy (EE) patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. In contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations.


Assuntos
Epilepsia , Deficiência Intelectual , Epilepsia/genética , Deficiência Intelectual/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Neurônios/metabolismo , Convulsões , Sódio/metabolismo , Canais de Sódio/genética , Humanos
14.
Sci Rep ; 13(1): 2538, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782059

RESUMO

Skeletal muscle sodium channel disorders give rise to episodic symptoms such as myotonia and/or periodic paralysis. Chronic symptoms with permanent weakness are not considered characteristic of the phenotypes. Muscle fat replacement represents irreversible damage that inevitably will impact on muscle strength. This study investigates muscle fat replacement and contractility in patients with pathogenic SCN4A variants compared to healthy controls. T1-weighted and 2-point Dixon MRI of the legs were conducted to assess fat replacement. Stationary dynamometry was used to assess muscle strength. Contractility was determined by maximal muscle contraction divided by cross-sectional muscle area. The average cross-sectional intramuscular fat fraction was greater in patients compared with controls by 2.5% in the calves (95% CI 0.74-4.29%, p = 0.007) and by 2.0% in the thighs (95% CI 0.75-3.2%, p = 0.003). Muscle contractility was less in patients vs. controls by 14-27% (p < 0.05). Despite greater fat fraction and less contractility, absolute strength was not significantly less. This study quantitatively documents greater fat fraction and additionally describes difference in muscle contractility in a large cohort of patients with skeletal muscle sodium channel disorders. The clinical impact of these abnormal findings is likely limited as muscle hypertrophy in the patients served to preserve absolute muscle strength. Subgroup analysis indicated significant difference in phenotype by genotype, however these findings lack statistical significance and serve as inspiration for future researchers to probe into the geno- phenotype relationship in these disorders.Trial registration: The study was registered at http://clinicaltrials.gov (identifier: NCT04808388).


Assuntos
Canalopatias , Doenças Musculares , Miotonia , Humanos , Estudos Transversais , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Doenças Musculares/patologia , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canais de Sódio/genética , Canalopatias/patologia
15.
Pain ; 164(6): 1321-1331, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607284

RESUMO

ABSTRACT: Transient voltage-gated sodium currents are essential for the initiation and conduction of action potentials in neurons and cardiomyocytes. The amplitude and duration of sodium currents are tuned by intracellular fibroblast growth factor homologous factors (FHFs/iFGFs) that associate with the cytoplasmic tails of voltage-gated sodium channels (Na v s), and genetic ablation of Fhf genes disturbs neurological and cardiac functions. Among reported phenotypes, Fhf2null mice undergo lethal hyperthermia-induced cardiac conduction block attributable to the combined effects of FHF2 deficiency and elevated temperature on the cardiac sodium channel (Na v 1.5) inactivation rate. Fhf2null mice also display a lack of heat nociception, while retaining other somatosensory capabilities. Here, we use electrophysiological and computational methods to show that the heat nociception deficit can be explained by the combined effects of elevated temperature and FHF2 deficiency on the fast inactivation gating of Na v 1.7 and tetrodotoxin-resistant sodium channels expressed in dorsal root ganglion C fibers. Hence, neurological and cardiac heat-associated deficits in Fhf2null mice derive from shared impacts of FHF deficiency and temperature towards Na v inactivation gating kinetics in distinct tissues.


Assuntos
Temperatura Alta , Nociceptividade , Animais , Camundongos , Gânglios Espinais/metabolismo , Sódio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Temperatura , Tetrodotoxina/farmacologia
16.
Artigo em Chinês | MEDLINE | ID: mdl-38604681

RESUMO

OBJECTIVE: To investigate the level of deltamethrin resistance and mutation sites in the sodium iron channel gene in Rhipicephalus microplus in Huaihua City, Hunan Province, and to examine the correlation between deltamethrin resistance and mutation sites in the sodium iron channel gene in Rh. microplus. METHODS: Rh. microplus was sampled from multiple yellow cattle farms in Huaihua City, Hunan Province from June to September 2022, and the level of resistance to deltamethrin was determined in ticks using the adult immersion test. The sodium iron channel domain III gene was amplified in deltamethrin-resistant and wild-type Rh. microplus using PCR assay. Following sequencing and sequence alignment, mutation sites were detected in bases. The sodium iron channel domain III gene in Rh. microplus was translated, and the signal peptide, transmembrane domain, and phosphorylation and glycosylation sites were detected in amino acid sequences. The tertiary structures of the sodium iron channel domain III protein of deltamethrin-resistant and wild-type Rh. microplus were deduced and compared, and the association be tween mutation sites in bases and resistance to deltamethrin was examined in Rh. microplus according the level of deltamethrin resistance, sequence alignment and protein tertiary structure. RESULTS: The median (LC50) and 95% lethal concentrations (LC95) of deltamethrin were 121.39 mg/L and 952.61 mg/L against Rh. microplus, with a resistance factor of 9.24 and level II resistance. The sequence of the sodium ion channel domain III gene was 1 010 bp in size, and mutation sites were detected in two neighboring bases in the sequence of the sodium ion channel domain III gene in deltamethrin-resistant Rh. microplus. Although no signal peptides were found in the sodium iron channel domain III protein of deltamethrin-resistant or wild-type Rh. microplus, 6 trans-membrane domains, 42 phosphorylation sites and 8 glycosylation sites were identified, with a significant difference in the tertiary structure of the sodium iron channel domain III protein between deltamethrin-resistant and wild-type Rh. microplus. CONCLUSIONS: Level II resistance to deltamethrin is detected in Rh. microplus in Huaihua City, Hunan Province, and two mutation sites that correlate with the emergence of deltamethrin resistance are identified in the sequence of the sodium iron channel domain III gene in deltamethrin-resistant Rh. microplus.


Assuntos
Nitrilas , Piretrinas , Rhipicephalus , Animais , Bovinos , Rhipicephalus/genética , Piretrinas/farmacologia , Mutação , Canais de Sódio/genética , Sódio , Resistência a Inseticidas/genética
17.
Rev Soc Bras Med Trop ; 55: e07012021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36287479

RESUMO

BACKGROUND: Malaria is a global health problem and is transmitted by the Anopheles species. Due to the epidemiological importance of the genus, studies on biological, phylogenetic, and evolutionary aspects have contributed to the understanding of adaptation, vector capacity, and resistance to insecticides. The latter may result from different causes such as mutations in the gene that encodes the sodium channel (NaV). METHODS: In this study, the NaV subunit I scaffold of 17 anopheline species was used to infer phylogenetic relationships of the genus Anopheles using Bayesian inference. The evolutionary phylogenetic tree of the NaV gene was aligned in the AliView program and analyzed utilizing Bayesian inference, using the software MrBayes. RESULTS: The anophelines were grouped into five well-supported clusters: 1 - Anopheles darlingi and Anopheles albimanus; 2 - Anopheles sinensis and Anopheles atroparvus; 3 - Anopheles dirus; 4 - Anopheles minimus, Anopheles culicifacies, Anopheles funestus, Anopheles maculatus, and Anopheles stephensi; and 5 - Anopheles christyi, Anopheles epiroticus, Anopheles merus, Anopheles melas, Anopheles gambiae, Anopheles coluzzii, and Anopheles arabiensis. CONCLUSIONS: The topology confirms the phylogenetic relationships proposed in studies based on the genome of some anophelines and reflects the current taxonomy of the genus, which suggests that NaV undergoes selection pressure during the evolution of the species. These data are useful tools for inferring their ability to resist insecticides and also help in better understanding the evolutionary processes of the genus Anopheles.


Assuntos
Anopheles , Inseticidas , Animais , Anopheles/genética , Filogenia , Teorema de Bayes , Mosquitos Vetores/genética , Canais de Sódio/genética
18.
Toxins (Basel) ; 14(9)2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36136568

RESUMO

Mesobuthus martensii, a famous and important Traditional Chinese Medicine has a long medical history and unique functions. It is the first scorpion species whose whole genome was sequenced worldwide. In addition, it is the most widespread and infamous poisonous animal in northern China with complex habitats. It possesses several kinds of toxins that can regulate different ion channels and serve as crucial natural drug resources. Extensive and in-depth studies have been performed on the structures and functions of toxins of M. martensii. In this research, we compared the morphology of M. martensii populations from different localities and calculated the COI genetic distance to determine intraspecific variations. Transcriptome sequencing by RNA-sequencing of the venom glands of M. martensii from ten localities and M. eupeus from one locality was analyzed. The results revealed intraspecific variation in the expression of sodium channel toxin genes, potassium channel toxin genes, calcium channel toxin genes, chloride channel toxin genes, and defensin genes that could be related to the habitats in which these populations are distributed, except the genetic relationships. However, it is not the same in different toxin families. M. martensii and M. eupeus exhibit sexual dimorphism under the expression of toxin genes, which also vary in different toxin families. The following order was recorded in the difference of expression of sodium channel toxin genes: interspecific difference; differences among different populations of the same species; differences between sexes in the same population, whereas the order in the difference of expression of potassium channel toxin genes was interspecific difference; differences between both sexes of same populations; differences among the same sex in different populations of the same species. In addition, there existed fewer expressed genes of calcium channel toxins, chloride channel toxins, and defensins (no more than four members in each family), and their expression differences were not distinct. Interestingly, the expression of two calcium channel toxin genes showed a preference for males and certain populations. We found a difference in the expression of sodium channel toxin genes, potassium channel toxin genes, and chloride channel toxin genes between M. martensii and M. eupeus. In most cases, the expression of one member of the toxin gene clusters distributed in series on the genome were close in different populations and genders, and the members of most clusters expressed in same population and gender tended to be the different. Twenty-one toxin genes were found with the MS/MS identification evidence of M. martensii venom. Since scorpions were not subjected to electrical stimulation or other special treatments before conducting the transcriptome extraction experiment, the results suggested the presence of intraspecific variation and sexual dimorphism of toxin components which revealed the expression characteristics of toxin and defensin genes in M. martensii. We believe this study will promote further in-depth research and use of scorpions and their toxin resources, which in turn will be helpful in standardizing the identification and medical applications of Quanxie in traditional Chinese medicine.


Assuntos
Venenos de Escorpião , Escorpiões , Sequência de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Defensinas/genética , Feminino , Masculino , Canais de Potássio/genética , RNA/metabolismo , Venenos de Escorpião/química , Escorpiões/genética , Escorpiões/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética , Espectrometria de Massas em Tandem , Transcriptoma
19.
Eur J Med Genet ; 65(10): 104577, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35918039

RESUMO

OBJECTIVE: Although the number of affected individuals is relatively low, pathogenic SCN3A variants have been reported in a range of phenotypes, from focal epilepsy to severe developmental and epileptic encephalopathy with polymicrogyria. METHODS: Case report and inclusion of current literature. RESULTS: Here, we report a normally developed boy with self-limiting generalized epilepsy with fever sensitivity due to a likely pathogenic SCN3A variant. He had febrile seizures from the age of one year, which were successfully treated with valproate. After tapering off medication, he only had rare breakthrough seizures, always associated with fever. At the age of 12 he continues to develop normally and have normal cognition. Reviewing the literature, there appears to be a correlation between functional outcome and phenotype. Gain of function SCN3A variants are seen in individuals with a severe epilepsy, cognitive impairment and brain malformations, while loss of function variants are seen in individuals with epilepsy, varying degrees of cognitive impairment, including normal cognition, but no brain malformations. SIGNIFICANCE: The genotype-phenotype correlations in SCN3A-related disorders presented here, will be important for families and clinicians alike, for diagnostic as well as possibly future treatment options.


Assuntos
Epilepsia Generalizada , Epilepsia , Epilepsia/genética , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Humanos , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Fenótipo , Canais de Sódio/genética
20.
Insect Biochem Mol Biol ; 148: 103814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932971

RESUMO

Pyrethroid insecticides prolong the opening of insect sodium channels by binding to two predicted pyrethroid receptor sites (PyR), PyR1 and PyR2. Many naturally-occurring sodium channel mutations that confer pyrethroid resistance (known as knockdown resistance, kdr) are located at PyR1. Recent studies identified two new mutations, V253F and T267A, at PyR2, which co-exist with two well-known mutations F1534C or M918T, at PyR1, in pyrethroid-resistant populations of Aedes aegypti and Nilaparvata lugens, respectively. However, the role of the V253F and T267A mutations in pyrethroid resistance has not been functionally examined. Here we report functional characterization of the V253F and T267A mutations in the Ae. aegypti sodium channel AaNav2-1 and the N. lugens sodium channel NlNav1 expressed in Xenopus oocytes. Both mutations alone reduced channel sensitivity to pyrethroids, including etofenprox. We docked etofenprox in a homology model of the pore module of the NlNav1 channel based on the crystal structure of an open prokaryotic sodium channel NavMs. In the low-energy binding pose etofenprox formed contacts with V253, T267 and a previously identified L1014 within PyR2. Combining of V253F or T267A with F1534C or M918T results in a higher level of pyrethroid insensitivity. Furthermore, both V253F and T267A mutations altered channel gating properties. However, V253F- and T267A-induced gating modifications was not observed in the double mutant channels. Our findings highlight the first example in which naturally-found combinational mutations in PyR1 and PyR2 not only confer higher level pyrethroid insensitivity, but also reduce potential fitness tradeoff in pyrethroid-resistant mosquitoes caused by kdr mutation-induced sodium channel gating modifications.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Aedes/genética , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio/genética , Canais de Sódio Disparados por Voltagem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...